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Abstract—For planetary rovers, autonomous mobility is a key 

to enabling greater science return. While current terrain sensing 
approaches can be used to detect geometric hazards, such as 
rocks and cliffs, they are limited in their ability to detect non-
geometric hazards, such as loose sand in which a rover may 
become entrenched. This paper presents a self-supervised 
classification approach to learning the visual appearance of 
terrain classes which relies on vibration-based sensing of wheel-
terrain interaction to identify these terrain classes. Experiments 
with a four-wheeled rover in Mars-analog terrain demonstrate 
the potential for this approach. 
 

I. INTRODUCTION AND RELATED WORK 
The ability of mobile robots to explore other planets is 

increasingly dependent on the autonomous mobility 
capabilities of these robots. Targets of scientific interest for 
future missions include terrains such as craters, ravines, and 
cliffs, where landing is treacherous. Therefore, a planetary 
rover must land at a distant site then travel to its target. Limits 
on communication with observers on Earth mean that close 
supervision can put significant restrictions on the distance a 
rover can travel during a mission lifetime. Thus, advances in 
robot autonomy will lead to payoffs in terms of scientific 
return. 

One current limitation in autonomous mobility lies in 
terrain sensing. Given an accurate map of the ease of 
traversability of terrain, existing path planning algorithms can 
generate a route to a target which avoids known obstacles 
[1,2,3]. The ability to generate this map, by remotely detecting 
possible hazards, would enable safe traversal of previously 
unexplored rough terrain. 

While geometric hazards, such as large rocks, can be sensed 
remotely using stereo vision [4], little research has addressed 
remote sensing of non-geometric hazards, such as the loose 
drift material in which the Mars Exploration Rover (MER) 
Opportunity became entrenched in April 2005. Non-geometric 

hazards are highly dependent on wheel-terrain interaction, so 
the sensing of such hazards has focused on using the rover 
wheels as sensors. Examples include wheel sinkage 
measurement [5,6], parametric soil characterization [7], wheel 
slip detection [8] and explicit traversability estimation [9]. 
This sensing is inherently local—the rover wheel must be in 
contact with the terrain to make a measurement—so it is of 
limited use for hazard avoidance. 

Remotely sensing non-geometric hazards depends on 
extrapolating from locally sensed data to gain information 
about more distant terrain, and this has only recently received 
attention from researchers. One group has attempted to 
correlate terrain appearance with wheel slip using a 
combination of unsupervised clustering and model fitting [10]. 
Another group has attempted to distinguish traversable terrain 
from non-traversable terrain using a self-supervised 
framework, to reduce the false positive detection of 
deformable obstacles such as tall grass [11]. Other researchers 
have used laser range sensors mounted on a ground vehicle to 
estimate a traversability cost for paths through natural 
terrestrial terrain, then fit a regression model based on color 
overhead imagery to predict the traversability costs for terrain 
over the horizon [12]. However no research has addressed the 
detection of non-geometric obstacles where their appearance 
has not been known a priori. 

This paper addresses the issue of generalizing local terrain 
sensing by training a visual classifier to recognize classes 
corresponding to different outputs of the local sensors. In the 
context of mobility, local sensors identify a terrain class, and a 
visual classifier identifies where that terrain appears in the 
distance. For this work, local terrain was classified based on 
vibrations in the rover structure, and distant terrain was 
classified as belonging to one of the locally identified classes. 
Experiments were performed using a four-wheeled rover in 
Mars-analog rough terrain. Results demonstrate the accuracy 
of this classifier at identifying the locally sensed terrain class 
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in the distance. This paper represents an update of the work 
described in [13], presenting results from more recent 
experiments with longer data sets and improved range data 
outlier rejection. 

Section 2 describes the self-supervised classification 
approach and the architecture of the component classifiers. 
Section 3 gives details about the experiments. Section 4 
presents the results of the experiments. Section 5 describes the 
conclusions drawn from these results and suggests directions 
for future research. 

II. APPROACH 

A. Overview 
In this paper, self-supervised classification is accomplished 

using a previously trained (i.e. supervised) vibration-based 
terrain classifier which provides labels for on-line training of a 
visual classifier, as illustrated in Fig. 1(a). Once labeled 
training data is available, standard supervised classification 
techniques can be used to train the visual classifier. The visual 
classifier is then able to predict the class of the terrain in the 
distance, as illustrated in Fig. 1(b). Significant challenges of 
such an approach lie in ensuring that the automated training 
process relies on correctly labeled training images, and that it 
does not overtrain the visual classifier. Details of the 
component vibration-based and vision-based classifiers are 
presented in this section, followed by details of the self-
supervised training approach.  

B. Local Vibration-Based Terrain Classification 
Here a supervisory classifier (which performs the initial 

labeling of terrain patches) relies on features drawn from the 
vibration signature arising from rover wheel-terrain 
interaction. The vibrations are recorded by a contact 
microphone fixed to the rover suspension near its right-front 
wheel. This sensory mode was proposed in [14], and 
classification results were presented in [15]. Similar work has 
been presented for high-speed ground vehicles in [16]. This 

approach is attractive because it relies on features arising from 
physical rover-terrain interaction, and thus provides useful 
cues for rover mobility prediction. 

The data features used by the vibration-based classifier are 
identical to those used in [15]. Vibrations are represented as 
the log-scaled magnitudes of the power spectral density of the 
vibration time signal. The power spectra represent 557 
frequencies ranging from 20.5 Hz to 12 kHz, estimated using 
Welch’s method [17]. Here the magnitudes are averaged over 
1-second windows to reduce noise. While 12 kHz is very high 
compared to the frequencies normally associated with vehicle 
vibrations, such high frequencies are observed when sensing 
rigid wheels surmounting rocks.  

The 557-element vector representing the vibration data is 
used as an input to a support vector machine (SVM) classifier 
[18]. Support vector machines are well established classifiers 
which use kernel functions to measure the similarity between 
new data and training data. For vibration-based classification, 
a second-order polynomial kernel is used, because it was 
empirically observed to demonstrate the highest classification 
accuracy in previous experiments. For multi-class 
classification, the probability estimation approach described in 
[19] is used. This yields a class likelihood for each terrain 
class. For this work, SVM algorithms are implemented in C++ 
using the LIBSVM library, with custom optimizations for 
classification using a linear kernel [20]. 

C. Remote Vision-Based Classification 
The local vibration-based classifier labels terrain patches as 

belonging to one of several a priori defined classes, and the 
images associated with these patches are employed to train a 
vision-based terrain classifier in a self-supervised framework. 
The vision-based classifier labels terrain based on images 
collected using a forward-looking color stereo camera pair. 
Vision-based classification has been studied extensively for 
terrain classification (e.g. [21,22]). Features observable using 
stereo cameras include color, visual texture, and geometry. 
These features are represented as inputs to the vision-based 
classifier as described below. 

Color data is directly available from the cameras as red, 
green, and blue (RGB) intensities. However, overall 
illumination intensity affects all three values in a raw RGB 
representation and is known to yield poor classification 
results, so the hue, saturation, and value (HSV) representation 
is used as in [12]. Here hue (an angle) is represented as two 
values, sin(hue) and cos(hue), to eliminate the artificial 
discontinuity at 2π. Thus, color is represented as a 4-element 
vector: [sin(hue), cos(hue), saturation, value]. 

Visual texture is a measure of the local spatial variation in 
intensity in the image. Researchers have proposed many 
metrics for visual texture, including Gabor filter 
representations and local energy methods [23,24]. This work 
uses a wavelet-based approach, similar to the one 
demonstrated in [25]. Here the grayscale image is decomposed 

(a)

(b)

Fig. 1. Schematic of self-supervised classification. (a) Vibration-supervised 
training of visual classifier. (b) Prediction using visual classifier. 
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with the Haar wavelet. Three scales of wavelets are used, each 
scale having horizontal, diagonal, and vertical (HDV) 
wavelets, corresponding to estimating the derivative in the 
horizontal, diagonal, and vertical directions at each length 
scale. The scales used are 2, 4, and 8 pixels. Because this data 
is noisy, the magnitudes of the wavelet coefficients are 
averaged over windows of 7, 9, and 11 wavelets. Thus, visual 
texture is represented by a 9-element vector, composed of the 
window-averaged horizontal, diagonal, and vertical wavelet 
coefficients at each scale. 

Geometric terrain data is available for the terrain through 
stereo image processing. This raw output is a point cloud. For 
this work, we consider the terrain to be a grid of 20-cm by 20-
cm patches, and calculate the statistics of the points within 
each grid. The first element of the geometric feature vector is 
the average slope of the terrain, defined as the angle the least-
squares-fit plane makes with the horizontal. The second 
element is the mean-squared deviation from that plane along 
its normal. The third element is the variance in height of the 
pixels, and the fourth is the height difference between the 
highest and lowest pixels in the patch. Thus, the geometry of 
each patch is represented as a 4-element vector: [slope, plane 
fit deviation, height variance, height range]. 

It should be noted that because the range data output from 
the stereo processing algorithm is noisy, a simple approach is 
used to reject obvious outliers prior to extracting the 
geometric features. A loose 2½-D restriction is applied as 
follows. Iterating from the bottom to the top of the stereo 
image, a point (i.e. a pixel with range data) is rejected if it is 
0.5 meters closer to the camera than the closest point in the 
five rows below it. Then, iterating from the top to the bottom 
of the image, a point is rejected if it is 0.5 meters farther from 
the camera than the farthest point in the five rows above it. 
This process has been observed to eliminate most of the 
obviously incorrect range data. 

As with the vibration-based classification, the vision-based 
classification employs a support vector machine classifier. A 
straightforward approach of concatenating the color, visual 
texture, and geometric features into a single feature vector 
resulted in poor classifier accuracy, so naïve Bayes fusion is 
used for the results presented here. This approach assumes 
that color, visual texture, and geometric features are 
conditionally independent given the terrain class. Thus, the 
likelihood of a terrain patch belonging to a terrain class is the 
product of the class likelihoods for each sensing mode. Note 
that since there may be many pixels observed in each terrain 
patch, the overall estimate of the class likelihood for the color 
mode is taken as the geometric mean of the individual pixel 
class likelihoods. The same approach is used for visual 
texture. 

To estimate the class likelihoods for each sensing mode, a 
support vector machine is used, as with the vibration data. 
Training is done separately for each sensing mode. For this 
SVM, linear and low-order polynomial kernels are considered, 

because they can be computed efficiently independent of the 
amount of training data. This is especially important for the 
color and texture modes because the classifier is applied to 
each pixel individually, so classification of each pixel must be 
very rapid. 

D. Self-Supervised Training Framework 
Here, the visual data needed for training the vision-based 

classifier is collected using forward-looking stereo cameras. A 
sample image from one of the stereo cameras is shown in Fig. 
2. Because the cameras cannot see the terrain immediately 
beneath the rover’s wheels, stereo images of terrain patches 
are stored in memory and recalled when the rover traverses 
them. This relies heavily on stereo processing to identify the 
distance to patches in the image and on accurate position 
estimation (over 1-10m distances) to identify when the rover 
has reached a patch of terrain. It has the advantage that each 
terrain patch is typically observed from multiple distances, 
which helps to make the classification independent of range. 

Training data is accumulated as the rover travels, with a 
separate set of training data stored for each terrain. To ensure 
that training time for the visual classifier is less than the stereo 
frame rate (not including feature extraction), each terrain is 
limited to a maximum of 400 data points—“old” data is 
forgotten if new data arrives that would exceed that 
maximum. Classification of the terrain is implemented on a 
patch level, based on naïve Bayes fusion of the class 
likelihoods of the color, visual texture, and geometric sensing 
modes. 

III. EXPERIMENT DETAILS 
This self-supervised classification approach is compared to 

traditional manually trained (supervised) classification using 
experimental data collected on TORTOISE, a four-wheeled 
mobile robot developed at MIT, in Mars-analog outdoor 
terrain. 

Fig. 2. Sample image from stereo camera with future path of rover marked in 
blue (sand), red (rock), and green (beach grass) 
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A. Robot Configuration 
TORTOISE, shown in Figs. 3 and 4, is an 80-cm-long, 50-

cm-wide, 90-cm-tall robot with 20-cm-diameter rigid 
aluminum wheels with grousers. The wheels on either side are 
connected to the main body and mast via a differential. The 
robot is outfitted with a forward-looking mast-mounted stereo 
camera pair, a belly-mounted monocular camera, a vibration 
sensor, and a body-mounted two-axis tilt sensor. Forward-
looking images were captured with the stereo camera pair, a 
Videre Design “dual DCAM” capable of capturing color 
images with 640 x 480 resolution. Range data were extracted 
from the stereo images using Videre Design’s commercial 
stereo processing software [26]. Color images of the right-
front wheel and its immediate surroundings were captured 
using the belly-mounted monocular camera. Vibrations from 
the right-front wheel were sensed using a Signal Flex SF-20 
contact microphone. Body pitch and roll were measured with 
a Crossbow CXTA02 two-axis tilt sensor. Additional sensors 
include a torque sensor and suspension configuration sensors, 
though these sensing modes are not used in this work. 

During experiments, the rover traveled at an average speed 
of 3 cm/sec. Vibrations were recorded at 44.1 kHz, body pitch 
and roll were captured at 25 Hz, images from the belly-
mounted camera were captured at 2 Hz, and forward-looking 
stereo images were captured every 2 seconds. These data were 
stored during experiments and processed offline. 

B. Experiment Environment 
Experiments were performed at Wingaersheek Beach in 

Gloucester, MA. This is a sandy beach with a mixture of small 
and large rock outcrops, relative to the size of the rover, and 
loose rocks. This site was chosen due to its similarity in 
appearance to the MER landing sites on Mars. In this 
environment, sand and rock were considered to be distinct 
terrain classes. To demonstrate the ability of the classification 
approach in a multi-class setting, matted piles of beach grass 
were used as a third terrain class. A sample scene is shown in 
Fig. 5. In this image, sand appears as a uniform gray flat 
surface, rock appears tan and orange with some steep slopes 
and fine uniform texture, and beach grass appears highly 
textured with mixed browns and dark shadows. 

Experiments used in this analysis were conducted over 
three days. Each data set was collected during a single rover 

Fig. 3. TORTOISE rover, showing section enlarged in Fig. 4 

Fig. 4. Local terrain sensors on TORTOISE 

Fig. 5. Sample scene from Wingaersheek Beach, with terrains labeled 
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traverse 10 to 35 meters along a straight-line path containing a 
combination of two or three terrains. No two paths were 
identical. During the experiments cloud cover ranged from 
overcast to direct sun. 

C. Data Processing 
Data were collected during the experiments and stored for 

processing offline. In each data set images were hand-labeled 
to identify a ground truth terrain class for each pixel. Each 
image typically contained regions corresponding to two or 
three of the terrain classes. For each data set, between 8 and 
25 evenly-spaced images were hand labeled for testing. 
Separate hand-labeled images from the beginning of each data 
set were used for training the manually trained vision-based 
classifiers. In all, six data sets, with 93 hand-labeled images, 
were used to assess the accuracy of the visual classifiers. 

For self-supervised classification, the vibration-based 
classifier was trained using hand-labeled vibration data from 
the data sets not being tested. The true terrain was identified 
manually based on images from the belly-mounted camera. 

IV. RESULTS 
The accuracy of the self-supervised classifier was assessed 

for each of the data sets as described in section III. Fig. 6 
shows the receiver operating characteristic (ROC) curves for a 
representative data set. Here, the horizontal axis indicates the 
false positive percentage (%FP) (for example, instances when 
a patch of sand or beach grass was falsely identified as rock) 
and the vertical axis indicates the true positive percentage 
(%TP). Each terrain forms a curve on the plot as the threshold 
for leaving terrain “unclassified” is adjusted. Note that the 
scale of the horizontal axis is magnified 10x relative to the 
vertical axis. In this plot it can be seen that both sand and 
beach grass are classified with very high accuracy: 80% of the 
patches for each of these terrains is positively identified 
before 1% of the remaining terrains are misidentified. The 
accuracy of rock classification is relatively poor—20% of the 
rock was identified with 2% false positive detection—
however this was due to a relatively low incidence of rock in 

this particular data set, which yielded a paucity of training 
data. Beyond the identified 20% of rock patches, the classifier 
predicted that the terrain was more likely to belong to one of 
the other classes. 

For comparison, a manually trained classifier was 
implemented. This classifier was trained using color, texture, 
and geometry data from hand-labeled images taken from the 
start of the same rover traverse as the test images. For each 
terrain 400 data points for each sensing mode were randomly 
selected and used to train a SVM classifier. Note that it is 
expected that the manually trained classifier would perform at 
least as well as the self-supervised classifier. ROC curves for 
this classifier applied to the same test images as used for the 
self supervised classifier are shown in Fig. 7. Here it may be 
seen that the manually trained classifier performed very well 
at identifying both sand and beach grass. Nearly 95% of the 
sand patches were identified before any other terrain was 
falsely identified as sand. For beach grass, nearly 70% was 
identified with less than 1% of the remaining terrain falsely 
identified. Results for rock were also good, with 80% of the 
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Fig. 6. ROC curves for self-supervised visual classifier 

TABLE I 
COMPARISON OF SELF-SUPERVISED CLASSIFIER TO MANUALLY TRAINED CLASSIFIER 
 Self-supervised 

Classifier 
Manually trained 

Classifier 
Manually trained 

Classifier  
(Prior Data Set) 

Mean % True Pos. 
[95% Conf. Int.] 

65.0% 
[43.5% - 86.5%] 

76.6% 
[60.7% - 92.5%] 

55.2% 
[35.3% - 75.1%] 

St. Dev. of 
% True Pos. 43.5% 32.1% 40.1% 

Mean 
%TP/(%TP + %FP) 

[95% Conf. Int.] 

0.87 
[0.78 – 0.95] 

0.91 
[0.84 – 0.98] 

0.68 
[0.49 – 0.86] 

St. Dev. of 
%TP/(%TP + %FP) 0.14 0.13 0.36 



 
 

6

rock positively identified before 4% of the remaining terrain 
was incorrectly identified as rock.  

Self-supervised classifiers and manually trained classifiers 
were implemented for each of the six data sets and the results 
are shown in the first two columns of Table I. The top two 
rows show statistics of the true positive percentage of the 
classifiers when no data is left unlabeled, corresponding to the 
vertical coordinate of the ROC curve endpoints. The bottom 
two rows show statistics related to the ratio between the true 
positive percentage and the false positive percentage. The 
metric, %TP/(%TP + %FP), is closely related to the fraction 
of labeled patches which are labeled correctly. 

In this table it can be seen that the manually trained 
classifier slightly outperforms the self-supervised classifier in 
terms of the mean true positive percentage, however the 
difference is still within the bounds of the 95% confidence 
interval. In addition, there is significantly more variability in 
the true positive percentile with the self-supervised classifier. 
The more surprising result is that in terms of the mean 
%TP/(%TP + %FP), the self-supervised classifier performs 
nearly as well as the manually trained classifier, which should 
be seen as the upper limit of a visual classifier of this type (i.e. 
using a support vector machine with this visual feature 
representation). 

It should be noted, however, that the self-supervised 
approach is intended for situations when a manually trained 
classifier is not a viable option. Thus, the accuracy of a self-
supervised classifier is more fairly compared to a manually 
trained classifier trained on the previous data set, because the 
time it takes to manually label data would delay the 
classifier’s implementation. The accuracy of such a classifier 
is shown in the third column of Table 1. Under these 
conditions it can be seen that the self-supervised classifier 
outperforms the manually trained classifier across all metrics. 
In particular, it was observed that the manually trained 

classifier performance was particularly degraded for the first 
data set of each day, when the classifier was trained using 
visual data from the previous day. This suggests that the 
particular lighting conditions are critical for accurate 
classification, so that even the imperfect and limited 
supervision of the vibration-based classifier is preferable to 
“perfect” training under different conditions. 

A. Impact of Supervisory Classifier Accuracy 
An additional factor that can affect the performance of the 

self-supervised classification approach is the accuracy of the 
supervising classifier, in this case the vibration-based terrain 
classifier. In scenarios where a limited amount of training data 
is present, there is a tradeoff between the number of terrain 
patches used for training and the confidence the vibration has 
in the labels for those patches. To study this effect, the 
classification confidence threshold was varied above and 
below the nominal value (0.95) and ROC curves were 
generated for each threshold. 

Preliminary results demonstrate a complex interaction 
between the vibration-based classifier threshold and the 
accuracy of the resulting vision-based classifier. Sample 
results are shown in Figs. 8 through 10. Fig. 8 shows the 
effect of the varied vibration classifier threshold on the 
classification of sand in the third data set. Here the 
classification accuracy (as observed in the proximity to the 
upper left corner of the plot) is highest for the low confidence 
threshold (0.75), decreases as the threshold is raised (0.90), 
and then improves again with a sufficiently high confidence 
threshold (0.975 and 0.995). This suggests that most of the 
classifications at lowest threshold were correct, and that valid 
training data was being discarded as the threshold was 
increased. The improvement at the high-threshold values 
suggests that some incorrect training data was discarded. 

Fig. 9 demonstrates a different behavior. Here it is seen that 
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Fig. 7. ROC curves for manually trained visual classifier 

0 50 100
0

20

40

60

80

100
Sand

% False Positive

%
 T

ru
e 

P
os

iti
ve

 

 

0.75
0.90
0.975
0.995

Fig. 8. Sand ROC curve as function of vibration-based classifier threshold for 
data set 3 
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the classifiers trained using the low confidence threshold (0.75 
and 0.90) were significantly less accurate than the high-
threshold classifiers. Here it may be assumed that a significant 
amount of incorrect training data was degrading the behavior 
of the classifiers, and that once that data was discarded, the 
classification accuracy improved dramatically. 

Fig. 10 demonstrates a third behavior: the gradual 
improvement of the classification accuracy as a function of the 
classification threshold. Here, the low-threshold classifier 
recognizes a small fraction of the sand. As the threshold is 
increased, the classifier is able to recognize a larger fraction of 
the sand without increasing the rate of false positives. 

These plots demonstrate the importance of high classifier 
confidence in the supervising classifier. Though the behavior 
illustrated in Fig. 8 shows that occasionally the low-threshold 
classifier outperforms the high-threshold classifier, the strong 
improvements demonstrated in the other figures suggests that 
the high-threshold classifier may be more likely to give good 
classification results, as would be expected. 

B. Computation time 
An effort was made to limit the computational complexity 

of training and testing in the proposed framework. As a result, 
the most computationally intensive tasks are the stereo data 
extraction and the texture feature computation. Extraction of 
the geometric features from the 3-D point cloud takes an 
average of 5 seconds per image using a Matlab script on a 
Pentium 1.8 GHz desktop PC. Texture feature extraction takes 
17.3 seconds using an unoptimized Matlab script. A C-code 
implementation would be expected to run much faster. 

Training the self supervised classifier took 1.5 seconds on 
average on a Pentium 1.8 GHz desktop PC, using the 
LIBSVM library. Classification was slightly slower, 4.1 
seconds per image on average, once the geometric and texture 
features were extracted. Since the classification results from 

the sensing modes were combined using a Matlab script, it 
would be expected that a C-code implementation of the full 
classification would run slightly faster. 

V. CONCLUSIONS 
In this work, a self-supervised classification approach was 

presented which automatically trains a visual classifier based 
on terrain classes sensed locally using a vibration-based 
terrain classifier. It employs a memory of the appearance of 
terrain currently being traversed to supply training data for the 
visual classifier. This approach was shown to perform nearly 
as well as a manually trained classifier on an outdoor Mars-
analog data set. Since the manually trained classifier was 
provided with correct class labels for large regions of images 
from the same traverses, it represents the limiting accuracy 
which the self-supervised classifier could be expected to 
achieve. 

It was also demonstrated that the self-supervised classifier 
outperformed a manually trained classifier trained using hand-
labeled images from the previous data set. This suggests that 
self-supervised classification may be preferred over a 
manually trained classifier when the illumination is changing 
more quickly than a manually trained classifier can be re-
trained. 

Additionally, the tradeoff between the number of training 
patches and the confidence in their labels was also studied. It 
was observed that, in general, maintaining a high confidence 
threshold on the training labels tended to yield more accurate 
vision-based classification results. 

Finally, it should be noted that even with relatively long 
traverses, some terrains had few terrain patches sensed using 
the vibration-based classifier, resulting in poor visual 
classifier training. An increase in the classifier accuracy would 
likely be gained by increasing the length of the traverses 
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Fig. 9. Sand ROC curve as function of vibration-based classifier threshold 
for data set 4 
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further. Methods for automatically analyzing the adequacy of 
visual classifier training is a focus of current work. 

A. Future Work 
Since the overarching goal of this research is to be able to 

predict the traversability properties of the terrain, a logical 
next step would be to incorporate measurements of the terrain 
properties into the terrain class definitions. Additionally, for 
situations when the vibration signatures of various terrain 
classes are not known a priori, autonomous segmentation of 
terrain into distinct terrain classes based on visual and tactile 
cues is necessary. 
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